DefendLinell (Open
source hardware project)

by Dmitry Pakhomenko

680

L £1.88.2018

DefandLinell REU1.G S
&W/u‘;r‘ncga,mngklult.com

- 3 /V 2
d . "
<3

o~

V 1.0-dev
Copyright © 2010 Magictale AVR projects community

Table of Contents

O 1 o TSP SPPPTTRSPPPTTRSPPIN 1
L1 PrOJECE OVEIVIEW ...ttt ettt ettt et e ettt e et e e et et e e e et eeeeba s 1
P2 oo 8 o gL oo 1o 1o PSR UPPPPTTTT 2
2.1, SPECITIC TEALUIES ... ettt et et et e et e e et e e et e e et e e ean e eanaaes 2
B o = 10 T = o 4
G300 R O o BT I T T |- o 4
3.2. PCB ANd COMPONENE LAYOULceeiiitieet ettt e e et e e et e e e e e e e et e e ean e aeannas 7
KRS IS o o (< 1o TN (] o= PRSP SPPPTT 8
4. SOFIWANE PaIT ...oieeeiiiii ettt e e e et e e e e e e e e e e n e e e e reenne 12
4.1, Fashing DOOLIOGOES ... et e et e e et e et e e e e een s 12
A.2. BUILAING FIMMWEIE ...ttt et ettt e et e et eeeebe s 15
4.3. Terminal COMMEANGSccoiverriri e eee e e et e e et e r e e e et e e e e r e e e e e e e nnrnn e neeee s 17
5. Plugging-in @XterNal GEVICESouuniii it e e e et e et et e e e e e eaans 24
5.1. C328 JPEG Colour Camera INEEGIaiONcceuuuiiiiiii ettt e et et e e 24
B. REFEIENCESveei ettt oottt er e e 26
i

DefendLinell, preliminary DefendLinell (Open

documentation V 1.0-dev source hardware project)

1. Preface

1.1 Project Overview

Thisarticle beginsdetail description of DefendLinell project and aimsto simplify its assembling, setting up and further
development by wide range of embedded controller designers and enthusiasts. First of al, traditional question, what
is the purpose of designing a new hardware platform when there are alot of things to choose from like Arduino, for
instance? Well, to begin with, Arduino boards are designed as set of generic solutionsfor literally everything and most
of the readers would probably agree that a generic way is definitely not the best one. To say more, the main page of
Arduino site describes the product as * €l ectronics prototyping platform... intended for artists, designers, hobbysts, and
anyone interested in creating interactive objects or environments’, in other words, Arduino offers platform for rapid
prototyping by virtually anyone, either with or without electronics and programming background.

In contrary, DefendLinell has pretty much definitive application field — objects control and automation in remote areas
and which, in its own turn, automatically imposes certain requirements such as fault tolerance and reliability. Ability
to work in remote and desolated areas means that the system must be fully functional in wide temperature range,
must perform regardless of power instability or even outages, must be as power efficient as it is possible, must have
embedded set of diagnostic tools for automated self checks and means to warn server side of when and what goes
wrong, must have a feature to recover in case of unexpected external or internal events and must keep the ability to
perform its primary task which in most cases is collecting, processing and sending data provided by sensors of any
kind. DefendLinell was designed with these features in mind.

Secondly, Arduino boards allow connections with different extension boards called shields and this makes possible to
get adesirable configuration capable of doing something specific. But again, designed to be generic, Arduino boards
along with installed shields represent rather bulky assembly and the total cost of it is relatively high. In comparison,
the main unit of DefendLinell was designed to be as compact as possible yet ergonomic enough and featuring SMD
components soldered on both sides. Hardware facilities allowing the main unit interacting in a unified way with the
outer world were deliberately separated from main board to have possibility to interchange transport layers so in order
to make the system Ethernet/ GSM/ZigBee compatible an appropriate transport module should be connected reducing
overall costs and dimensions. In addition, some components which are not required for some particular solutions could
be not soldered which is an extra point to minimize system’s cost.

As Arduino boards are intended for anyone it forced the designers to simply many things to make them easier to
understand or use. It automatically creates some limitations hardly noticeablein case of generic basic projects. Indeed,
DefendLinell isdesigned for people who have good soldering skills, some experience in embedded programming, not
just programming and for people who are not afraid to spend a little bit more effort than in case of Arduino based
projects to achieve outstanding results. And we are here to help you in this endeavor.

Thank you for your attention and all the best,
Magictale team

DefendLinell, preliminary DefendLinell (Open
documentation V 1.0-dev source hardware project)

2. Product Introduction

2.1 Specific features

DefendLinell isthe most advanced and multifunctional project of Magictale company so far. It was designed to be the
second generation of DefendLine GSM alarm system allowing to break mobile phone dependency, aimed to minimise
power consumption, increase overall system's fault tolerance and remain fully functional in environments with harsh
conditions like subzero and negative temperatures.

Main unit features:

* Includes Atmel ATmegal280 chip with 128k internal flash program memory clocked by 14.7456 MHz crystal;

» Power supply: 3.3 Vdc, dual independent stabilized power sources (7-14 V unregulated input as main source, 0.8-14
V input as backup or battery source), interrupt driven power failure detection;

 Four independent input lines for alarm sensors (PIR sensors, etc) and one line for tamper detection;
» Two 10A 240 VAC relay outputs,

* Four hardware serial interfaces for communication with GSM/Ethernet/Bluethooth/Zigbee/GPS modules, JPEG
CMOS cameras etc. (One seria port is used by onboard USB-to-Seria FT232BL chip to simplify device
configuration, flashing and debugging procedures but USB functionality may be disabled by ajumper so there will
be four serial ports at your service);

» Dedicated I2C real time clock chip;

» Dedicated 12C thermometer/thermostat chip;

 Standard AVR ISP 10-pin connector for in-circuit flashing;

 Standard JTAG 10-pin connector for in-circuit debugging;

» USB connection via serial port emulation, Win/Linux driver support;

» MicroSD dlot for storing pictures, sounds etc;

* 12C connector for interfacing with tilt/accel erometer/motion etc sensors;
* Interface for 2x16 3.3V LCD display, backlight fading out feature;

» Two buttons for toggling modes;

e Three LEDs (green, red and blue) to indicate states, the first one is used for USB traffic indication, the last two
could be programmed at designer discretion;

» Two extension connectors with 10 and 6 /O lines;
» PWM driven interface to external speaker;

» Four interfaces to external servo motors;

DefendLinell, preliminary DefendLinell (Open
documentation V 1.0-dev source hardware project)

Product Introduction

* Pre-flashed bootloader allows to program the unit via USB, no need in external AVR ISP programmer;
» Open source firmware unlocks literally unlimited potential of this unit;

Currently thefirst main unit isunderwent itstesting phase including schematic sol utions validation and PCB functional
tests. First version of firmwareisat intensive devel opment stage and very soon will become available to the community
as open source project at SourgeForge.net. PCBs will became available for buying fully assembled, not assembled

(just bare PCB) and with some critical components soldered to simplify assembling for less advanced hobbists and
beginners.

DefendLinell, preliminary DefendLinell (Open
documentation V 1.0-dev source hardware project)

3. Hardware Part

3.1 Circuit Diagram

The heart of the unit is CPU ATMegal280 microprocessor running at 14.7456 MHz (Y 3 crystal). This frequency
provides required accuracy to clock serial communications at 57600/115200 bps between the unit and external devices
such as PC, GPS module, GPRS modem, JPEG cameras etc. The ATMegal280 processor has four hardware serial
ports facilitating simultaneous interactions with a few serial-aware modules. CONN19 is a standard JTAG header,
CONNZ20 is a standard | SP10 header, its pinoutsis fully compatible with very popular among hobbists USBTiny ISP
AVR programmer. U8 and R32 components guarantee the RES (reset) active level when the power supply isnot within
working voltage range.

USB interfaceisimplemented on adedicated FT232BL chip (U4) and optional serial EEPROM AT93C46 (U1). There
aremany solutions allowing to work with USB without a dedicated chip but they al have afew significant drawbacks:
main CPU must be clocked by either 6 or 12 MHz crystals (which is unacceptable in our case), more CPU resources
are required to handle software USB interface, there is a need in USB drivers and these drivers do not usually exist
for three major operating systems (Windows, Linux and MacOS) and finally, there are afew implementations of USB
functionality in C/C++ languages but you have to pay for aright to use them in your own code. In contrary, FT232BL
has rich software support — there are drivers for Windows, Linux and MacOS and in most cases they can be found
automatically by operating system. The chip doesall low level work and communicates with CPU viaserial interface,
also thereis no need in copyrighted USB libraries on microcontroller side. FT232BL hasits own 6 MHz crystal (Y1)
so USB timings are not dependable on CPU clock. U1, R1 and R2 componets are optional and may not be soldered
if there is no need to customize USB VID, PID, Serial Number, Product Description Strings and Power Descriptor.
For interfacing with CPU only TXD, RXD and CTS signals are used, the rest (DTR, DSR, DCD and RI) are left
unconnected. LED1 serves as visual indication of incoming/outgoing USB traffic. R35, R36 are for USB voltage
detection so the moment when the voltage appears may be classified as a connection to PC. When USB connection
is not used, U4 could be disconnected from CPU by means of JP1 jumper so the serial interface might be spared for
adifferent application.

Temperature sensor and thermostat is implemented on DS1621 chip (U2). Temperature settings and temperature
readings are all communicated to/from U2 over a simple 2-wire 12C seria interface. THRM line works as external
interrupt waking up CPU when the measured temperature is outside of predefined range.

Real time clock/calendar PCF8563 (U5) has a dedicated 32768 KHz crystal (Y 2). The clock chip has ALRM line
triggering when alarm or timer goes off so that most of the time the CPU can stay in power down mode significantly
reducing power consumption. Like temperature sensor, PCF8563 communicates with CPU over 12C seria interface.

Q2, R20, R18, D2 and CONN23 are designated to generate sound/voi ce through PWM driven SND line. If the feature
is not vital, these components may be not soldered.

CONNZ2 is used for MicroSD card plugging. Hardware ports SerialO... Serial2 are available through CONN16,
CONNZ2, CONN4 connectors. Serial3 port is designed to be an integration point with external transport modules such
as GSM modem/Ethernet card/etc, the port is available through CONN17 header and along with traditional RX3,
TX3signalshas RTS3, CTS3, STAT, PWRK, AIN extralines and unregulated 12V power linesin case if an external
module has its own power stabilizer with different voltage.

DefendLinell, preliminary DefendLinell (Open
documentation V 1.0-dev source hardware project)

http://cgi.ebay.com/USBtinyISP-AVR-ISP-Atmel-Programmer-Arduino-bootloader-/170474128004
http://cgi.ebay.com/USBtinyISP-AVR-ISP-Atmel-Programmer-Arduino-bootloader-/170474128004

Hardware Part

CONN14, CONN15, CONN21, CONN22 have PWM driven outputs so they can be used with some models of servo
motors. CONNS5 is 12C bus for external 12C (TWI) aware components or modules to be connected. CONNG could be
used as software driven 1Wire interface designed by Dallas Semiconductor.

User interface consists of two S1 and S2 buttons, optional LCD display with conventional contrast regulation and
PWM driven backlight (R4 and Q3 components), LED1, LED2 arejust for internal states or event indication, especially
if LCD display is not installed, the LEDs might be programmed at designer’s discretion. Buttons' behavior is also
customizable.

CONN12 and CONN18 serve as extensions, their application isentirely up to designers. CONN has 6 general purpose
IO lines, CONN18 has 10 GPIOs. In addition, CONN18 pinouts has been made compatible with LED Matrix Display
project.

CONN1 isintended for connection for up to four external sensors if the module is used as alarm/security system, the
header has a separate line for tampering detection and unregulated 12V output for powering active devices such as
PIR sensors. R27, R29, R30, R31 and D6, D7, D8, D9, D10 protect CPU inputs from damaging from overvoltage.

Optional REL1, REL2, D2, D11, Q4 and Q5 elements are used for an independent commutation of two external AC
driven appliances such as desk lamps, aguarium pumps or similar over two CONN10 and CONN13 connectors with
normally connected and normally disconnected contact pairs.

The unit has dual power supply, main and backup, both of them use DC-DC regulators. Main power supply requires
unregulated 12V on itsinput and it is built on U7, D4, C32, C33, D5, L4, R26, R25, C34 and C35 components. The
backup one is functional with input voltage range from 0.8V to 14V, it consists of U6, C13, R7, L2, C14, D1, R19
and R22 components. Q1, R21, R23 and R24 are used for backup DC-DC converter automatic shutdown when there
ismain power supply. C8, R11, R12, C11, R13, R14 are used for main and backup power supply voltage monitoring.

The project’ s circuit diagram is given below:

DefendLinell, preliminary DefendLinell (Open
documentation V 1.0-dev source hardware project)

http://atmega.magictale.com/?p=122
http://atmega.magictale.com/?p=122

Hardware Part

Q
b}

Dy Pakhomenko

T

| oA

il

g

g

7z

Uit T Sl

Figure 3.1. DefendLinell Circuit Diagram

DefendLinell, preliminary DefendLinell (Open
documentation V 1.0-dev source hardware project)

Hardware Part

Note

Circuit diagrams are licensed under a Creative Commons Attribution Share-Alike license, which allows
for both personal and commercial derivative works, aslong asthey credit ‘ AVR Magictale Projects’ and

release their designs under the same license.

3.2 PCB And Component Layout

PCB layout with all layersonisgiven below. Asyou may notice, all components are placed on both sides of the board.

DefendLinell, preliminary DefendLinell (Open
documentation V 1.0-dev source hardware project)

Hardware Part

O 0/010\0 O O

,Olll
@

o)(e)

Figure 3.2. DefendLinell PCB Layout

3.3 Soldering tips

DefendLinell PCB will be distributed in three kits: just a PCB, without any components, a pre-assembled PCB
with just ATMegal280, FT232BL, DS1621, PCF8563, MicroSD connector, crystals, 1SP10 header and a few
resistors/capacitors soldered and fully assembled with all components soldered. If you decided to solder component
by yourself then we hope you will find these recommendations useful. The most challenging task is to solder 100-pin
ATMegal280 with pin pitch = 0.4 mm. You must be heard many times that it is impossible to solder such chips

DefendLinell, preliminary DefendLinell (Open
documentation V 1.0-dev source hardware project)

Hardware Part

manually? In reality it is not as scary asit looks — you just need to have certain set of ordinary tools, good soldering
skills and patience. First of al, you will need a Clamp tool with magnifier. If could be found in many online stores,
we ordered it in Farnell. That is how the magnifier lookslike:

Figure 3.3. Clamp tool with magnifier

Secondly, you will need not just a soldering iron but a soldering station. It does not have to be an expensive one —
something like Duratech TS1560 will be just enough, hereis how the station looks:

U _ g

Figure 3.4. Duratech TS1560 Soldering Sation

And finally, you will need solder paste in syringe packaging, an invaluable ingredient for soldering/rework processes.
We put SMD291NLto atest, the item was purchased in Digikey and got quite satisfying results. The package filled
with soldering paste looks like that:

DefendLinell, preliminary DefendLinell (Open
documentation V 1.0-dev source hardware project)

http://cpc.farnell.com/duratool/d00269/clamp-tool-with-magnifier/dp/TL10478
http://shop.voltelectronics.com.au/spare-soldering-pencil-for-ts-1560-soldering-station.html?gdftrk=gdfV2866_a_7c64_a_7c142_a_7c44_d_TS1561
http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=SMD291SNL-ND

Hardware Part

Figure 3.5. SMD291SN\L soldering paste

Now we are ready to solder the chip. Set up the soldering iron temperature to about 350 degrees Celsius (~660 degrees
Fahrenheit), place the PCB of a desk in front of you. Make sure that the PCB is laying horizontally and you have
enough light, (sunlight is preferable but not mandatory). Using the syringe apply soldering paste generously to cover
all pads. Remove the chip from its packaging and carefully place it on the board aligning its pins along the pads. Pay a
special attention to the chip’ s orientation —it may look differently under the light from different directions— make sure
that you pinpointed first pin correctly. Look at the chip through a magnifier —it will reveal possible problematic areas
which would left unnoticed otherwise. Finally, al pins should be within pad areas without any overlapping. Solder
one outer pin of any of four pin rows while gently holding the chip — either with help of fingers or tweezers. Check
the results through the magnifier again. Correct chip alignment if it is necessary and solder another outer pin located
diagonally from the first one. Check the results again. Solder the rest of pins. Keep in mind that you do not have to see
apin on a pad with great details —when a pin is soldered, the shape of pad is not flat anymore and it begins to reflect
sunlight differently, so it is clearly visible which pins have been soldered and which have been not done yet.

When the process is completed you should have something like this:

10

DefendLinell, preliminary DefendLinell (Open
documentation V 1.0-dev source hardware project)

Hardware Part

Figure 3.6. DefendLinell Under Magnifier

DefendLinell, preliminary
documentation V 1.0-dev

DefendLinell (Open
source hardware project)

11

4. Software Part

4.1 Flashing bootloader

A bootloader is a compact executable code often flashed in upper program memory areaimplementing basic transfer
protocol and facilitating self-programming function, making possible firmware updates without need to have an
external programmer. In most cases bootloaders simulate basic programmers to take advantage of already existing
software support without invention of something new. Of course, initially a bootloader must be flashed by means of
an external programmer.

To begin with, DefendLinell PCB must have as minimum the following components soldered: U3, C30, C31, Y3
(CPU and clock source); CONN20 (ISP connector for serial programming), R33, R34, LED2, LED3 (LEDsto indicate
device states); L1, C4, C5.

Next we need an | SP programmer, let's take as an example USBtinylSP AVR ISP Atmel Programmer. It costs only
US $15.50, supplied with two flat cables (for 10 and 6 pin connectors) and is capable of providing a flashing board
with +5V that is why there is no even need to solder power supply components at this stage. Download USB drivers
required for the programmer, they are available here. Connect the programmer to a PC over a USB cable, Windows
should report about newly found device and will ask for drivers. Unzip and install just downloaded archive. Now in
Device Manager anew device called USBtinyl SP AV R Programmer should appear in LibUSB-Win32 Devices group.
The ISP programmer is ready for work, see the screenshot below:

L Computer Management

Q File Action View ‘Window Help =) J
& & =2 =Ra
Computer Management (Local) = DMITRYSYD LY
- ﬁ% Syskem Tools + (;yi comicom - serial port emulators
+ Eil Ewent Yiewwer + j Cornpuker
+ gl Shared Folders +-age Disk drives
+- &% Performance Logs and Alerts + § Display adapters
=), Device Manager + ik DVDICD-ROM drives
] @ Storage +-{& Human Interface Devices
+ Removable Storage +-=% IDE ATAJATAPI controllers
Disk Defragmenter +-e Kevboards
Disk Management - %P LiblJSE-Win32 Devices
+ @ Services and Applications % LSBEkinyISP AYR Programmer
+- 7y Mice and other pointing devices
+- % Monitors
+ ? Metwiork adapters P

Figure4.1. USBTiny ISP AVR programmer connected

Now we need WinAVR, open source software development tools for the Atmel AVR microprocessors. The project
contains many tools and utilities, development libraries, plenty of examples, tons of documentation and, of course,
source codes but right now wewill be using avr-gcc (C/C++ compiler) and avrdude (software support for hugediversity
of AVR ISP programmers). Download the latest version and install the project. Open Command Prompt and type
‘avrdude'. If everything has been done correctly, alist of avrdude options will be displayed:

12
DefendLinell, preliminary DefendLinell (Open
documentation V 1.0-dev source hardware project)

http://cgi.ebay.com/USBtinyISP-AVR-ISP-Atmel-Programmer-Arduino-bootloader-/170474128004
http://winavr.sourceforge.net

Software Part

Command Prompt

C:avrdude
: avrdude [options]

{partno> Regquired. Specify AUR device.
{haudrate > Ouverride R§-232 baud rate.
<hitclock> Specify JTAG/STES0DOvZ hit clock period C(usd.
<config-file> Specify location of configuration file.
{programmer > Specify programmer type.
Dizable auto erase for flash memory
i {delay> ISP Clock Delay [in microseconds]
{port> Specify connection port.
Ouerride invalid signature check.
Perform a chip erase.
Perform RC oscillator calibration (see AURDS3D.
<memtyper:iriwivi{filename>[:format]
Memory operation specification.
Multiple -l options are allowed,., each reguest
is performed in the order specified.
Do not write anything to the device.
Do not verify.
Dizable safemode,. default when running from a scrip|

Silent safemode operation, will not ask you if
fuses should be changed bhack.
Ent terminal mode.
{exitspec[.{exitspec>] List programmer exit specifications.
<extended_param> Pass <{extended_param> to programmer.
Count # erase cycles in EEPROM.
<{number> Initialize erase cycle # in EEPROM.
Uerbose output. —v —-v for more.
Quell progress output. —gq —g for less.
Display this usage.

lavrdude project: {URL:http://savannah.nongnu.org/projectssavrdude>

HAYS

Figure 4.2. Avrdude Options

Now it is time to test whether the programmer can communicate with PC and the board. Connect the board and the
programmer with 10-wire flat cable but before make sure that programmer's 'PWR' jumper is closed - in this case the
board won't need a power supply (at least for now):

.

»

g

"
-

A

I

SLD T i
-

Cu
o
o
o
o
o
o
o
o
o
o
o

00000
L

i

Figure 4.3. DefendLinell flashing bootloader
Type in Command Prompt the following command:

avrdude -p ml280 -c wusbtiny -U hfuse:r:high.txt:h -U I[fuse:r:lowtxt:h -U
efuse:r:ext.txt:h

If the board is functional the programmer will read high, low and extended values of fuse bites and write them in
high.txt, low.txt and ext.txt filesaccordingly. Check the values of fuse bits carefully. In order to support external crystal
and bootloader the following values must be written to the chip: 0x98 for high fuse byte, 0xD7 for low and OxFF for
extended one. If you have different values they can be changed with the following commands:

13

DefendLinell, preliminary DefendLinell (Open
documentation V 1.0-dev source hardware project)

Software Part

avrdude -p nl280 -c usbtiny -U hfuse:w 0x98: m avrdude -p nl280 -c usbtiny -U
| fuse: w. O0xD7: m avrdude -p nil280 -c usbtiny -U efuse: w OXFF: m

Download source code for DefendLinell project. It might be done in two ways. If you have SVN tool installed then
the following line in Command Prompt will create project's folders along with all project'sfiles:

svn co https://defendline2. svn.sourceforge.net/svnroot/defendline2 defendline2
The target fileswill belocated in\ def endl i ne2\ CPP\ Boot Loader\ folder.

In caseif you don't have SVN installed you can smply download the files by browsing DefendLinell Bootloader in
SVN repository. An already compiled file for flashing called ATnegaBOOT_168_at megal280. hex could befed
to ISP programmer directly but in case if you want to compile it yourself you will need ATnegaBOOT_168. ¢ and
Makef i | e. Change the current directory to the one where these files are located and type the following command:

make nega

In case of success you should see something like this:

¢ Command Prompt

iC:%>»cd C:“\Projectsdefendline2“CPP~Bootloader

Gz P oJect.,\defendllneZ\CPP\BootLoadex >make mega

aur—gcc —g —Wall —02 —mmcu=atmegal280 -DF_CPU 147456lIIIIIL *—DMAX _TIME_COUMT =F_CPF|

%)igé * —DNUM LED _FLASHES=1' -DBAUD_RATE=57600 —¢ —o AlmegaBOOT_168.0 ATmegaBOO)
_ c

lavr—gcc —g —Wall —02 —mmcu=atmegal280 -DF_CPU=14745%600L *—DMAX_TIME_COUNT =F_CP|

U>>4* *-DNUM_LED_FLASHES=1' -DBAUD_RATE=57600 -Wl.-—section—start=.text=0x1FO00

o ATmegaB0OT_168_atmegal280.elf ATmegaBOOT_168.0

lavr—objcopy —j .text —j .data -0 ihex ATmegaBOOT_168_atmegal280.elf ATmegaBOOT_1

68 _atmegalZB80.hex

rm ATmegaB0OT_168.0 ATmegaBOOT_168_atmegal280.elf

IC:“Frojectsndefendline2~CFP BootLoader>_

Figure 4.4. Bootloader compilation process

A just compiled ATnegaBOOT_168_at megal280. hex will be located in the same directory. Now it could be
flashed to the board, type the following line in Command Prompt:

avrdude -p ml280 -c usbtiny -U flash: w ATnegaBOOT_168_at negal280. hex

This procedure takes a few minutes because avrdude will flash aimost all program memory despite that fact that the
bootloader occupies only upper 4 kBytes. When the flashing is completed a control will be given to bootloader section
first, the bootloader will start and attempt to read a command from PC host. Before that an onboard orange LED will
blink, itisagood indication that everything isjust fine.

Next step isto solder USB and power supply related components: U4, LED1, JP1, R3, R5:R10, C1, C2, C3, C6, C7,
CONN1, Y1 (USB port hardware support); SB1 (for forcing deviceto start bootloader when flashed); CONNOY, L3, L4,
D4, D5, C32-C35, U7, R25, R26 (main power supply). When it is done, power up the board over CONN9 connector,
there should be about +12V. Check the voltage after U7 DC-DC converter, it should be about +3.3V.

Disconnect USBtiny AVR programmer and connect the board to PC via USB, Windows should report about newly
found virtual COM port and will install the drivers automatically. Now in Device Manager a new device called USB
Serial Port should appear in Ports(COM& L PT) group, see the screenshot bel ow:

14
DefendLinell, preliminary DefendLinell (Open
documentation V 1.0-dev source hardware project)

Software Part

5 Computer Management

Q File Action View window Help —|= J
@ = =Ra

Computer Management (Local) +|- g Disk drives -
= ﬁ% Swstem Tools + .é Display adapters
+ Event Viewer +1 i DVDJCD-ROM drives
¥ g shared Folders +|- {85 Human Interface Devices
+ &4 Performance Logs and Alerts +-{=4 IDE ATAJATAPT controllers
=), Dievice Manager +]-z» Keyboards
= @ Storage +-) Mice and other poinking devices
+ Removvable Storage +)5 Maonitors
Disk Defragmenter +- B8 MNetwork adapters
Disk Management + @ Cther devices
+ @ Setvices and Applications - (;yi Parts (COM 2 LPT)

néy" Communications Port (COML)

(;yi Communications Part {COMZ)

5 ECP Printer Port (LPT1)

5 Tnfrared virtual COM port (COM3)
UUSE Serial Port (COM4)
+ ﬂ Processors

+ @% SiC5I and RAID controllers
+- @, sound, video and game controllers

¥ Swstem devices
£ > + Universal Serial Bus controllers I

Figure 4.5. DefendLinell virtual serial port

As avrdude has a limitation in serial ports range (from COM1 to COM4 only), we need to allocate the virtual serial
port to COM3 or COM4 (COM1-COM2 are usually taken). Don't forget to set port speed to 57600 in port's settings.

Now you are able to update board firmware without any external ISP programmer, for instance, to flash
Def endLi nel I . hex you need to issue the following command:

avrdude -p ml280 -c avrisp -P comd -b 57600 -U fl ash: w. Def endLi nel | . hex

Note, that this time we use ‘avrisp' programmer type and explicitly defining COM port and baud rate. Thereisalso a
trick: at first the abovementioned command should be issued then the DefendLinel | board should be reset or powered
up because the bootloader waits for some short period of time for acommand from PC host and then it gives a control
to the main program located at 070000 address in program memory. Another way to initiate flashing processisto hold
SB1 button while the board is being powered up and until the flashing process starts.

4.2 Building firmware

Building firmware is pretty much similar to building bootloader described in the previous article. Assuming that
you have WinAVR and SVN aready installed, your DefendLinell PCB has bootloader flashed and avrdude can
communicate with the board so you are ready for the procedure.

Download source code for DefendLinell project if you have not done it yet by entering the following command line
in Command Prompt:

svn co https://defendline2. svn. sourceforge. net/svnroot/defendline2 defendline2

The source files will be located in\ def endl i ne2\ CPP\ DLI | _Mai n\ folder and make file will bein\ bui | d
subdirectory. In Command Prompt change current directory to \ def endl i ne2\ CPP\ DLI | _Mai n\ bui | d and
type make without parameters, in case of success there will be the output similar to this:

15
DefendLinell, preliminary DefendLinell (Open
documentation V 1.0-dev source hardware project)

Software Part

Command Prompt

avpr—c++ —mmcu=atmegal280 —gdwarf-2 -D_ STDC_LIMIT_MACROS -Wall —DF_CPU=147456I,
NOUL —0s —funsigned—char —funsigned-bitfields —fpack—struct —fshort—enums -MD —M
P -MI WInterrupts.o -MF depsWInterrupts.o.d -c¢ .. Uinterrupts.c

avr—c++ —mmcu=atmegal280 —-W1l,—Map=DefendLinell .map DefendLinell.o twi.o Wire.o |
iring.o Print.o HardwareSerial.o DS1621.o0 PCFB8563.0 sd_raw.o byteordering.o fat.
o partition.o SerialCamera.o MicroSD.o Winterrupts —o DefendLinell.elf
avr—objcopy —0 ihex -R .eeprom —R .fuse -R .lock - signature DefendLinell.elf
DefendLinell.hex

lavr—objcopy —j .eeprom ——set—section—flags=.eeprom="alloc.load" ——change—section
—1ma .Eeprom=m —no—change—warnings -0 ihex DefendLinell.elf DefendLinell.eep i1
exit

avr—objdump —h -8 DefendLinell.elf > DefendLinell.lss

AUR Memory Usage

38984 hytes (29.72% Full>
(.text + .data + .hootloaderd

2805 hytes <(34.2x Full)
.hss + .noinit>

80 hytes (2.0x Full>
¢ .eepromd)

C:sProjectssdefendline2~CPP~DLII_Main-build>

Figure 4.6. Compiling DefendLinell

The file we are after is DefendLinell.hex, it will be located in /build directory along with many others generated by
building procedure. Connect your board with USB cable to PC and type the following command (com4 should be
replaced with com21:com3 depending on your virtual COM port configuration):

avrdude -p ml280 -c avrisp -P comd -b 57600 -U fl ash: w. Def endLi nel | . hex

Immediately after issuing the command power up the board while holding SB1 button until the flashing process starts.
Whileflashing green LED will be blinking fast asan indication of board-host dataexchange. After flashing processred
and blue LED will be blinking repeatedly, it means that the procedure was successfully completed and main program
block is up and running.

Next step will be checking if your board communicates viaterminal program. Standard Windows HyperTerminal can
be used but it is not very convenient tool, we recommend to download Tera Term Open Source project. Set up your
terminal to open theright virtual COM port with 115200 bps baud rate, 8 bit data, none for parity, 1 stop bit and none
for flow control. Type 'help’ in the terminal window and the board should respond with its name and list of possible
commands:

16
DefendLinell, preliminary DefendLinell (Open
documentation V 1.0-dev source hardware project)

Software Part

B COM4:115200baud - Tera Term V|

File Edit Setup Control Window Help

help

=== DefendlLinell ¥1.08, October, 2010

=== yisit http://atmega.magictale.com
Device name: DLII_SYD_01

Avail.commands: test, bootldr, ls, mkdir, cd, rm, df, cat, touc
h, sync, takephoto, write, set time, get sensor descr, set sens
or descr, get device name, set device name

—>

Figure 4.7. DefendLinill Terminal Window

Congratulations! Y our board isready for experiments. Next articlewill give adetail description of the board'sterminal
commands.

4.3 Terminal commands

A great deal of DefendLinell configuring might be done over aterminal. To usethisoption the board must be connected
to PC viaUSB cable and serial selector JP1 must have pins 1 and 2 connected together. Asaterminal program standard
Windows HyperTerminal can be used but it is not very convenient tool, we recommend to download Tera Term Open
Source project. Again, set up your terminal to open the right virtual COM port with 115200 bps baud rate, 8 bit data,
none for parity, 1 stop bit and none for flow control. All commands are case sensitive and must be ended with Enter.
Parameters (if any) are entered after command and separated by spaces. List of available commands might be obtained
by help command, the output is below:

17
DefendLinell, preliminary DefendLinell (Open
documentation V 1.0-dev source hardware project)

Software Part

hel p

=== DefendLinell V1.0, Cctober, 2010 ===
=== visit http://atmega. magi ctal e. com ===
Devi ce name: DLII_SYD 01

Avai |l . conmands: test, bootldr, |s, nkdir, cd, rm df, cat, touch, sync,
t akephoto, wite, set tine, get sensor descr, set sensor descr,
get device nane, set device nane

Example 4.1 'help' command output

test command retrieves board's configuration and tests some components and external devices. Typica command
output is given below:

- >t est

AVR ATMEGA1280 CPU

Tenperature sensor DS1621 - detected, current tenperature: 33.0 degrees C
Real Ti me cl ock PCF8563 - detected, current tinme: 20:17:24 14/11/2010

M croSD card - detected

Seri al Canera - detected

Serial Canera initial - success

Seri al Canmer a set PackageSi ze - success

Seri al Camera snapshot - success

Example 4.2 'test' command output

The information above means that main board CPU is ATMEGA 1280, temperature sensor is installed and works,
realtime clock chipisinstalled and works and both MicroSD card and JPEG serial cameraare detected and successfully
passed initialization.

bootldr command forcibly launches bootloader but please note that avrdude won't have access to the serial port until
terminal application is running, you will be given 5 seconds to close the terminal and run avrdude command. More
convenient way isto press SB1 button and hold it until avrdude command is performed, of coursein this case terminal
application must be closed as well. The command output is given below:

- >boot | dr
Boot | oader will be starting in 5 seconds:

Example 4.3 'bootldr' command output

18
DefendLinell, preliminary DefendLinell (Open
documentation V 1.0-dev source hardware project)

Software Part

Is command displays the content of current MicroSD card directory in format file(directory) name and file length.
Typical output is given below:

->|'s

2010/ O

2009/ 0

2008/ 0O
test01.j pg 9788
test02.txt 17

Example 4.4 'ls command output

mkdir [dirname] command creates a new directory. First and the only parameter is directory name. Currently names
with spaces are not supported, typical output is:

->nkdir 2007
success

Example 4.5 'mkdir' command output

cd [dirname] command changes current directory. To return to root directory cd .. command should be used. A typical
command output is given below:

->cd 2010
success

->l's
.10
..l 0
test01l.jpg O

Example 4.6 'cd' command output

rm[name] command removes file or directory.First and the only parameter isfile or directory name. Typical output:

19
DefendLinell, preliminary DefendLinell (Open
documentation V 1.0-dev source hardware project)

Software Part

->|'s

2010/
2009/
2008/
2007/

o O O O

->rm 2007
success

->|'s

2010/ 0
2009/ 0
2008/ 0

Example 4.7 'rm' command output

df command retrieves system information about MicroSD card. Typical output:

- >df

manuf: 0?3
oem SD
prod: SU02G
rev: 80
serial: 0x4DrC004
date: 3/10
si ze: 1886MB
copy: 1
w.pr.: 0/0
format: O

free: 1973747712/ 1975287808

Example 4.8 'df' command output

cat [filename] command displays file content. Text files will be displayed as text, all other types - as dump of bytes.
Typical output:

20
DefendLinell, preliminary DefendLinell (Open
documentation V 1.0-dev source hardware project)

Software Part

->cat testl1l.jpg

0: FF D8 FF EO O 11 4A 46

8: 49 46 012345

10: 6 7 8 9 AFF DB O

18: 43 0 10 CCECA

20: 10 E E E 12 12 10 14
28: 18 28 1A 18 16 16 18 32
30: 24 26 1E 28 3A 34 3E 3C
38: 3A 34 38 38 40 48 5C 4E
40: 40 44 58 46 38 38 50 6E

Example 4.9 ‘cat' command output

touch [filename] command creates a new empty file with given name. Typical output:

->|'s
.10
./ 0

->touch nyfile.txt
success

->|'s
./ 0
..l 0
nyfile.txt O

Example 4.10 'touch’ command output

synccommand performsMicroSD card synchronization. Useful if the card has been inserted/replaced without switching
the board off. Typical output:

->sync
success

Example 4.11 'sync' command output

takephoto [filename] command takes photo and stores it in a file with given name. Note, that this command works
only if a JPEG serial camerais connected to a COM port (currently COM1). More information will be provided in
aseparate article.

21
DefendLinell, preliminary DefendLinell (Open
documentation V 1.0-dev source hardware project)

Software Part

write [filename] command reads text lines from terminal and writes into previously created file. Currently does not
append into the end of file, previous file content will be rewritten if exists. Typical output:

->touch test03.txt
success

->wite test03.txt

opening file:

pl ease type file content, double to finish file appendi ng
linel

line2

line3

Success

->cat test03.txt
linel
line2
line3

Example 4.12 'write' command output

set time [HH: mm:ss DD/MM/YYYY] command sets RTC chip date and time, typical output is given below:

->set time 10:55:00 14/10/2010
success

Example 4.13 'set time' command output

get sensor descr [sensor_num] command retrieves user defined sensor description which simplifies event
identifications. Thisdatais stored in EEPROM memory segment and won't be lost during power outages. Maximum
name length is 16. Sensor_num parameter isin range 0..3. Typical output is given below:

->get sensor descr 1
curr. value: Miin door
success

Example 4.14 'get sensor descr' command output

set sensor descr [sensor_num] [description] command stores user defined sensor description into EEPROM memory
segment. Sensor_num isin range 0..3 and description is atextual sensor description.

22
DefendLinell, preliminary DefendLinell (Open
documentation V 1.0-dev source hardware project)

Software Part

get device namecommand retrieves user defined board name. This data is stored in EEPROM memory segment and
won't be lost during power outages. Maximum name length is 16. Typical output:

->get devi ce nane
Devi ce nanme: DLII_SYD 01
success

Example 4.15 'get device name' command output

set device name [device name] command stores user defined board name into EEPROM memory segment.
Device nameisatextual string.

23
DefendLinell, preliminary DefendLinell (Open
documentation V 1.0-dev source hardware project)

5. Plugging-in external devices

5.1 C328 JPEG Colour Camera Integration

DefendLinell has a native support of JPEG Colour Camera (C328 compatible). Such type of camera is capable of
delivering VGA quality till pictures, it is equipped with hardware JPEG compressor and seria interface making
integration with embedded devices quick and easy. This camera requires two wires (RX and TX) for serial
communication, ground and positive power wires. Peak power consumption reaches 60mA at 3.3V but most of the
time camera staysin stand-by mode making it quite attractive for security, monitoring, medical embedded applications
and designing of robot-kits of any kind, this description perfectly fits to our needs. The cameralooks like that:

Figure5.1. C328 Camera

Potentially DefendLinell is capable of supporting for up to three serial cameras (in this case USB port won't be
available) but in this example we are going to demonstrate how to handle only one camera connection. Check carefully
camera header pinouts before connect it to CONN3 serial header located on our board. Pin interconnection table is
given below:

24
DefendLinell, preliminary DefendLinell (Open
documentation V 1.0-dev source hardware project)

http://www.sparkfun.com/products/9334

Plugging-in external devices

Table 5.1. Pin interconnections

Signal name Wire color C328 cameraJl header | DefendLinell CONN3
header

Vee (3.3V) Red 1 6

Camera Tx Yellow 2 1

Camera Rx Green 3 3

GND Black 4 2.4

Software support is provided by a class implemented in Ser i al Caner a. ¢ file. The class exploits all camerds
features described in great detail in C328 User Manual. In order to take a picture five basic steps should be performed:
synchronization procedure (series of specific byte sequence to wake up the camera), initial camera settings (JPEG or
RAW mode, picture resolution), setting up of a package size (pictures are split into packages when being sent to the
host controller), making a snapshot itself (issuing a command to read raw data from sensor and store it in internal
cameraRAM) and finally reading of a stored picture in aloop package by package until the whole picture is received.

On the very top level the interactions with a camera are encapsulated in Def endLi nell.c in just two
methods: ui nt 8_t takePi cture(char* fileName, uintl6_t resCode) andvolatile void
onPi ct ur ePacket Recei ved(uint8 t* buf, uintl6_t len, struct fat file_struct* fd).
Thefirst oneinitiates cameraand MicroSD filesystem, requests a snapshot and the second method handles data portion
every time when next package arrives. When the operation is successfully completed a JPEG file will be stored in
current directory on MicroSD card.

The process of taking pictures might betriggered manually interminal. Insert MicroSD intoitsslot, connect the camera
to CONN3 header, connect board to your PC via USB cable, power up the board and launch terminal application.
Typet est and the device should report that MicroSD and Serial camera are detected and initialized (please refer to
Section 4.3, “Termina commands’ for more information). If this step was successful you can take a picture. Point
your camerato adesirable object and typet akephot o [fi | enane] . Orange LED will start repeatedly blinking
asindication of datatransfer and in afew seconds anew captured image will be stored on aflash card in JPEG format.

Files stored on aflash might be transferred to PC in two ways - by sticking MicroSD directly into computer with help
of acard reader or by meansof cat [fi |l enane] command intermina which outputsthe content of binary filesas
dump of hex data. Later this dump could be converted into binary file so that the file will be viewable. In the nearest
futureit is planned to employ lightweight ZModem protocol to facilitate file transfers between the board and PC.

25
DefendLinell, preliminary DefendLinell (Open
documentation V 1.0-dev source hardware project)

http://atmega.magictale.com/wp-content/uploads/2010/11/C328_UM.pdf

6. References

* Atmel, AVR microprocessrors manufacturer, ht t p: / / www. at mel . com

o USBtinylSP AVR ISP Atmel Programmer,
http://cgi.ebay. conf USBti nyl SP- AVR- | SP- At el - Pr ogr ammer - Ar dui no- boot | oader- /17047412800:

* WinAVR project, open source software devel opment toolsfor the Atmel AV R series of RISC microprocessors hosted
on the Windows platform, ht t p: / / wi navr. sour cef or ge. net

e MagicTale AVR projects, Magictale = community home, initiator of this project,
http://at mega. magi ct al e. com

26

DefendLinell, preliminary DefendLinell (Open
documentation V 1.0-dev source hardware project)

	DefendLineII (Open source hardware project)
	Table of Contents
	1. Preface
	1.1 Project Overview

	2. Product Introduction
	2.1 Specific features

	3. Hardware Part
	3.1 Circuit Diagram
	3.2 PCB And Component Layout
	3.3 Soldering tips

	4. Software Part
	4.1 Flashing bootloader
	4.2 Building firmware
	4.3 Terminal commands

	5. Plugging-in external devices
	5.1 C328 JPEG Colour Camera Integration

	6. References

